Electric Field

Force on q by Q
$$\vec{F}_{Qq} = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{\left|\vec{r}_{12}\right|^2} \hat{r}_{12}$$

$$\vec{E} = \frac{\vec{F}_{Qq}}{q} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{|\vec{r}_{12}|^2} \hat{r}_{12}$$

$$\vec{E} \sim \hat{r}_{12}$$

$$\left| \vec{E} \right| \sim Q$$

$$\left| \vec{E} \right| \sim \frac{1}{\left| \vec{r}_{12} \right|^2}$$

Comment on notation and electric flux

Using Gauss's Law (to find electric field)

Example: Uniformly charged sphere: find electric field everywhere

- Charge distribution: spherical symmetry = electric field: spherical symmetry
- Spherical symmetry: $\vec{E} \sim E(r)\hat{r}$

Spherical symmetry means the Gaussian surface must be spherical

Case 1: r>a

Enclosed Charge = Q

$$\Phi = \frac{Q}{\varepsilon_0}$$

$$\Phi = E(r)4\pi r^2$$

$$E(r)4\pi r^2 = \frac{Q}{\varepsilon_0}$$

$$E(r) = \frac{1}{4\pi r^2} \frac{Q}{\varepsilon_0}$$

$$\vec{E}(r) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \hat{r}$$

$$\rho = Q/(\frac{4\pi a^3}{3})$$

$$Q_{enclosed} = \rho \frac{4\pi r^3}{3}$$

$$Q_{enclosed} = Q \frac{r^3}{a^3}$$

Case: r<a

$$\Phi = \frac{Q}{\varepsilon_0} \frac{r^3}{a^3}$$

$$\Phi = E(r)4\pi r^2$$

$$E(r)4\pi r^2 = \frac{Q}{\varepsilon_0} \frac{r^3}{a^3}$$

$$E(r) = \frac{1}{4\pi r^2} \frac{Q}{\varepsilon_0} \frac{r^3}{a^3}$$

$$\vec{E}(r) = \frac{1}{4\pi\varepsilon_0} \frac{Qr}{a^3} \hat{r}$$

Infinite Charged Plane

Sheet charge density: (C/m^2) σ

Draw electric field in the Doc Cam

